141 research outputs found

    Chemical-genetic profile analysis in yeast suggests that a previously uncharacterized open reading frame, YBR261C, affects protein synthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s) for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, ~4700 strains) for increased sensitivity to paromomycin, which targets the process of protein synthesis.</p> <p>Results</p> <p>As expected, our analysis indicated that the majority of deletion strains (134) with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45), cellular component biogenesis and organization (28), DNA maintenance (21), transport (20), others (38) and unknown (39). These may represent minor cellular target sites (side-effects) for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, <it>YBR261C</it>, that we term <it>TAE1 </it>for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of <it>TAE1 </it>alters the ribosomal profile of the mutant cells. Also, gene deletion strain for <it>TAE1 </it>has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that <it>TAE1 </it>genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using <it>TAE1 </it>overexpression also links <it>TAE1 </it>to protein synthesis.</p> <p>Conclusion</p> <p>We show that a previously uncharacterized ORF, <it>YBR261C</it>, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s).</p

    Chemical-genetic profile analysis of five inhibitory compounds in yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemical-genetic profiling of inhibitory compounds can lead to identification of their modes of action. These profiles can help elucidate the complex interactions between small bioactive compounds and the cell machinery, and explain putative gene function(s).</p> <p>Results</p> <p>Colony size reduction was used to investigate the chemical-genetic profile of cycloheximide, 3-amino-1,2,4-triazole, paromomycin, streptomycin and neomycin in the yeast <it>Saccharomyces cerevisiae</it>. These compounds target the process of protein biosynthesis. More than 70,000 strains were analyzed from the array of gene deletion mutant yeast strains. As expected, the overall profiles of the tested compounds were similar, with deletions for genes involved in protein biosynthesis being the major category followed by metabolism. This implies that novel genes involved in protein biosynthesis could be identified from these profiles. Further investigations were carried out to assess the activity of three profiled genes in the process of protein biosynthesis using relative fitness of double mutants and other genetic assays.</p> <p>Conclusion</p> <p>Chemical-genetic profiles provide insight into the molecular mechanism(s) of the examined compounds by elucidating their potential primary and secondary cellular target sites. Our follow-up investigations into the activity of three profiled genes in the process of protein biosynthesis provided further evidence concerning the usefulness of chemical-genetic analyses for annotating gene functions. We termed these genes <it>TAE2</it>, <it>TAE3 </it>and <it>TAE4 </it>for translation associated elements 2-4.</p

    Yeast Features: Identifying Significant Features Shared Among Yeast Proteins for Functional Genomics

    Get PDF
    Background&#xd;&#xa;High throughput yeast functional genomics experiments are revealing associations among tens to hundreds of genes using numerous experimental conditions. To fully understand how the identified genes might be involved in the observed system, it is essential to consider the widest range of biological annotation possible. Biologists often start their search by collating the annotation provided for each protein within databases such as the Saccharomyces Genome Database, manually comparing them for similar features, and empirically assessing their significance. Such tasks can be automated, and more precise calculations of the significance can be determined using established probability measures. &#xd;&#xa;Results&#xd;&#xa;We developed Yeast Features, an intuitive online tool to help establish the significance of finding a diverse set of shared features among a collection of yeast proteins. A total of 18,786 features from the Saccharomyces Genome Database are considered, including annotation based on the Gene Ontology&#x2019;s molecular function, biological process and cellular compartment, as well as conserved domains, protein-protein and genetic interactions, complexes, metabolic pathways, phenotypes and publications. The significance of shared features is estimated using a hypergeometric probability, but novel options exist to improve the significance by adding background knowledge of the experimental system. For instance, increased statistical significance is achieved in gene deletion experiments because interactions with essential genes will never be observed. We further demonstrate the utility by suggesting the functional roles of the indirect targets of an aminoglycoside with a known mechanism of action, and also the targets of an herbal extract with a previously unknown mode of action. The identification of shared functional features may also be used to propose novel roles for proteins of unknown function, including a role in protein synthesis for YKL075C.&#xd;&#xa;Conclusions&#xd;&#xa;Yeast Features (YF) is an easy to use web-based application (http://software.dumontierlab.com/yeastfeatures/) which can identify and prioritize features that are shared among a set of yeast proteins. This approach is shown to be valuable in the analysis of complex data sets, in which the extracted associations revealed significant functional relationships among the gene products.&#xd;&#xa

    Colony size measurement of the yeast gene deletion strains for functional genomics

    Get PDF
    BACKGROUND: Numerous functional genomics approaches have been developed to study the model organism yeast, Saccharomyces cerevisiae, with the aim of systematically understanding the biology of the cell. Some of these techniques are based on yeast growth differences under different conditions, such as those generated by gene mutations, chemicals or both. Manual inspection of the yeast colonies that are grown under different conditions is often used as a method to detect such growth differences. RESULTS: Here, we developed a computerized image analysis system called Growth Detector (GD), to automatically acquire quantitative and comparative information for yeast colony growth. GD offers great convenience and accuracy over the currently used manual growth measurement method. It distinguishes true yeast colonies in a digital image and provides an accurate coordinate oriented map of the colony areas. Some post-processing calculations are also conducted. Using GD, we successfully detected a genetic linkage between the molecular activity of the plant-derived antifungal compound berberine and gene expression components, among other cellular processes. A novel association for the yeast mek1 gene with DNA damage repair was also identified by GD and confirmed by a plasmid repair assay. The results demonstrate the usefulness of GD for yeast functional genomics research. CONCLUSION: GD offers significant improvement over the manual inspection method to detect relative yeast colony size differences. The speed and accuracy associated with GD makes it an ideal choice for large-scale functional genomics investigations

    Binding Site Prediction for Protein-Protein Interactions and Novel Motif Discovery using Re-occurring Polypeptide Sequences

    Get PDF
    Background: While there are many methods for predicting protein-protein interaction, very few can determine the specific site of interaction on each protein. Characterization of the specific sequence regions mediating interaction (binding sites) is crucial for an understanding of cellular pathways. Experimental methods often report false binding sites due to experimental limitations, while computational methods tend to require data which is not available at the proteome-scale. Here we present PIPE-Sites, a novel method of protein specific binding site prediction based on pairs of re-occurring polypeptide sequences, which have been previously shown to accurately predict proteinprotein interactions. PIPE-Sites operates at high specificity and requires only the sequences of query proteins and a database of known binary interactions with no binding site data, making it applicable to binding site prediction at the proteome-scale. Results: PIPE-Sites was evaluated using a dataset of 265 yeast and 423 human interacting proteins pairs with experimentally-determined binding sites. We found that PIPE-Sites predictions were closer to the confirmed binding site than those of two existing binding site prediction methods based on domain-domain interactions, when applied to the same dataset. Finally, we applied PIPE-Sites to two datasets of 2347 yeast and 14,438 human novel interacting protein pairs predicted to interact with high confidence. An analysis of the predicted interaction sites revealed a number of protein subsequences which are highly re-occurring in binding sites and which may represent novel binding motifs. Conclusions: PIPE-Sites is an accurate method for predicting protein binding sites and is applicable to the proteome-scale. Thus, PIPE-Sites could be useful for exhaustive analysis of protein binding patterns in whole proteomes as well as discovery of novel binding motifs. PIPE-Sites is available online a

    Molecular localization of a ribosome-dependent ATPase on Escherichia coli ribosomes

    Get PDF
    We have previously isolated and described an Escherichia coli ribosome-bound ATPase, RbbA, that is required for protein synthesis in the presence of ATP, GTP and the elongation factors, EF-Tu and EF-G. The gene encoding RbbA, yhih, has been cloned and the deduced protein sequence harbors two ATP-motifs and one RNA-binding motif and is homologous to the fungal EF-3. Here, we describe the isolation and assay of a truncated form of the RbbA protein that is stable to overproduction and purification. Chemical protection results show that the truncated RbbA specifically protects nucleotide A937 on the 30S subunit of ribosomes, and the protected site occurs at the E-site where the tRNA is ejected upon A-site occupation. Other weakly protected bases in the region occur at or near the mRNA binding site. Using radiolabeled tRNAs, we study the stimulating effect of this truncated RbbA on the binding and release of different tRNAs bound to the (aminoacyl) A-, (peptidyl) P- and (exit) E-sites of 70S ribosomes. The combined data suggest plausible mechanisms for the function of RbbA in translation

    Manganese-induced cellular disturbance in the baker’s yeast, Saccharomyces cerevisiae with putative implications in neuronal dysfunction

    Get PDF
    Manganese (Mn) is an essential element, but in humans, chronic and/or acute exposure to this metal can lead to neurotoxicity and neurodegenerative disorders including Parkinsonism and Parkinson’s Disease by unclear mechanisms. To better understand the effects that exposure to Mn 2+ exert on eukaryotic cell biology, we exposed a non-essential deletion library of the yeast Saccharomyces cerevisiae to a sub-inhibitory concentration of M

    Global Functional Atlas of \u3cem\u3eEscherichia coli\u3c/em\u3e Encompassing Previously Uncharacterized Proteins

    Get PDF
    One-third of the 4,225 protein-coding genes of Escherichia coli K-12 remain functionally unannotated (orphans). Many map to distant clades such as Archaea, suggesting involvement in basic prokaryotic traits, whereas others appear restricted to E. coli, including pathogenic strains. To elucidate the orphans’ biological roles, we performed an extensive proteomic survey using affinity-tagged E. coli strains and generated comprehensive genomic context inferences to derive a high-confidence compendium for virtually the entire proteome consisting of 5,993 putative physical interactions and 74,776 putative functional associations, most of which are novel. Clustering of the respective probabilistic networks revealed putative orphan membership in discrete multiprotein complexes and functional modules together with annotated gene products, whereas a machine-learning strategy based on network integration implicated the orphans in specific biological processes. We provide additional experimental evidence supporting orphan participation in protein synthesis, amino acid metabolism, biofilm formation, motility, and assembly of the bacterial cell envelope. This resource provides a “systems-wide” functional blueprint of a model microbe, with insights into the biological and evolutionary significance of previously uncharacterized proteins

    Transcriptional Profiling Suggests Extensive Metabolic Rewiring of Human and Mouse Macrophages during Early Interferon Alpha Responses

    Get PDF
    Emerging evidence suggests that cellular metabolism plays a critical role in regulating immune activation. Alterations in energy and lipid and amino acid metabolism have been shown to contribute to type I interferon (IFN) responses in macrophages, but the relationship between metabolic reprogramming and the establishment of early antiviral function remains poorly defined. Here, we used transcriptional profiling datasets to develop global metabolic signatures associated with early IFN-α responses in two primary macrophage model systems: mouse bone marrow-derived macrophages (BMM) and human monocyte-derived macrophages (MDM). Short-term stimulation with IFN-α (500 metabolic genes altered in mouse and human macrophage models. Pathway and network analysis identified alterations in genes associated with cellular bioenergetics, cellular oxidant status, cAMP/AMP and cGMP/GMP ratios, branched chain amino acid catabolism, cell membrane composition, fatty acid synthesis, and β-oxidation as key features of early IFN-α responses. These changes may have important impl
    corecore